
ISSN 0265-2919

80p

“UR Saallelieeli
BS Sing $4.50 USS

e REE a HunanoRaaaAaE ms
i ati RETURNS Spaeut Bn ai GEMMA HE

i ae NE Say a my init Maun RAE Bh

APPLICATION

SURVIVAL OF THE FITTEST How the
home computer worldcametobe
dominated by two microprocessor designs

HARDWARE

SCRIBBLE PAD We take a look at the
Grafpad, a graphics tablet for home micros

TAKING STOCK Our series on business
packages continues with an analysis of a
stock recording system

g

ALTERNATIVE PATHS We introd
uce two

new logic gates - NAND and NOR

PROGRAMMING PROJECTS

DEGREES OF PRECISION We look at
how to use trig functions in BASIC programs

FROM BASIC TO BISTABLE A weekly
glossary of computing terms

MACHINE CODE

STARTING FLAG We look at the function
of the flags in the processor status register

GETTING IT TAPED Virgin Games is a
new company that sees connections between
marketing records and computer games

HALF MEASURE We show you how to
build a half adder circuit |

COVER PHOTOGRAPHY BY IAN McKINNELL

HISTORY OF THE MICROPROCESSOR/ APPLICATION <

SURVIVAL OF THE
FITTEST
There are millions of microprocessors in use
throughout the world, doing jobs as diverse
as controlling microwave ovens and video
recorders, to powering the familiar home
computer. And yet, despite the huge
numbers involved and the diversity of
applications, the market is dominated by
just two designs: the Z80 and the 6502.

Computers on a chip came about almost by
accident. In 1972, the chip manufacturer Intel was
asked by Datapoint to develop a chip to replace
the large number of TTL (transistor-transistor-
logic) chips needed in the computer terminals of
the time. The product they came up with was
called the 8008. It was capable of processing data
eight bits at a time, and would have made an ideal
‘logic replacement’ for use in Datapoint’s
terminals but for one drawback — it operated too
slowly. Although Datapoint decided not to use it,
the 8008’s potential as a general-purpose
computer CPU was soon spotted by engineers and
hobbyists, and thus: the affordable, desk-top
computer was born.

The limitations of the 8008 in terms of speed
and power soon became apparent, however, and
so Intel set about designing a replacement. The
chip they developed, the 8080, rapidly established
itself as the dominant force in the market.

At about the same time as Intel announced the
8080, their competitors Motorola launched an
eight-bit microprocessor called the 6800. The
design philosophies behind the 8080 and the 6800
differed considerably, but they were equally
powerful and suitable for use as the basis of a
microcomputer design.

Although the 8080 and the 6800 were equally
efficient, an accident of history paved the way for
the phenomenal success ofa third chip, the Z80. In
1974, Gary Kildall, now President of Digital
Research, produced a disk operating system for
Intel called CP/M. This allowed 8080-based
computers to be used with the recently introduced
Shugart floppy disk drives. Kildall’s operating
system was rejected by Intel, who thought that
existing software was sufficient to use with the
standard mainframe computer systems of the
time.

However, smaller computers were becoming
increasingly popular and CP/M greatly facilitated
file-handling on these systems. This fact ensured
the market dominance of the 8080 for many years,
and cast the Motorola 6800 into relative obscurity.
Various attempts were made to provide
comparable disk operating systems for the 6800,

Mang a

eRe

ay

but the impetus had gone to the 8080, leaving the
6800 in the cold.

As the market for microprocessor-based
products grew, chip manufacturers scrambled to
come up with new designs, but always had to
contend with the reluctance of the market to
accept anything new unless it offered significant
advantages. Investments in hardware design and
software production also inhibited the adoption of
any new, incompatible microprocessor.
A stroke of genius gave an unexpected break to

a new chip design — the Z80. Zilog, a team of
design engineers who had previously worked on
the 8080 for Intel, realised that the instruction set
could be extended. In other words, not all of the
possible combinations of ones and zeros that
could be recognised by the 8080 as instructions
had been exploited. By using binary combinations
not used by the Intel chip, Zilog were able to
design a microprocessor that would perform
identically to the 8080 when supplied with 8080
instructions, but that could offer a considerable
improvement in performance. They were thus
able to create a chip that used software written for
the 8080.

The Vital Choice

Most home micros make the
choice between a 6502
processor (as in the BBC Micro)
or a Z80 (for example, in the

Spectrum). The Dragon, one of
the few to use other chips, has a
6809

THE HOME COMPUTER ADVANCED COURSE 161

Chi Chart
wigs ev have volved
from two main sources: those

Stemming from the original Intel
Microprocessors andthose

from Motorola’s rival 6800 chip. 22 ==. ae
_ Thischartshowsthewaythe ne §=6WaS a Very

chips developed, aswellas sits _ _ Cl ; ‘wey=scould only har
some of the machines in which yo | #&§&;%=xgQOojf (aaa four-bit grou
they have been used. Many of |)—Crr”~—~t—“(—™—C—C—C—C—C—C—C—COSSSC*t*t‘“=‘*#R®RCCORSCOUOCOiiwiti‘C(‘COa‘’CCYCYCNSCSC((UU) progressed to e
the less well-known chips —Srt—“—S i tits CC processing with the

_ appear in the less popula =. —rti“iéi—COCCTCTThCUC~CS«s =—__eesemese no a
micros. The Apple Ill is perhap |. UmUmrtw~wrOCOCOCOCOCOWC > im
the only business nine to _. . 7 SS) >, >) o / : | x sopn building their own

[ste _ | ~=—hC(<—hrrt—mB|. _ - e brew’ computers

Motorola

machine.
successful

SLE LELILELILE LE LEE

. cm: the arial ae

often found in portables s
asthe Tandy Model 100 ||

Sai very muchO.
ltscheap pricemadeitvery =
attractive to hobbyists acts

—Metéreta’s highly-acclaimed
16-bit chip has been) eee —
hampered bythelackof “#08 and 8088: The 8088 is a

| pea a sialetes , . scaled-down version that can

However, Sinclair has chosen PiepbieniAt cS
_ §0 for a while was the most

asthe gran _ 1 popular 16-bit chip. Its use in
oe po eta lS the Sirius and in the IBM PC

: — _ made it the most popular 16-
bit chip. The higher-

performance but fully
compatible 8086isnow
a used in most machines

In addition to this innovation, Zilog also came
up with another important commercial advantage.
Whereas the Intel chip depended on a special
clock generator chip as well as a system controller
chip, the Zilog team managed to combine all the
logic needed for a _ microprocessor-based
computer onto a single chip. Even though it was
relatively expensive, the fact that it could replace
several other chips made it very attractive to
manufacturers.

Although the 6800 had not fared well
compared with the 8080, it was still popular
among some designers and programmers.
Motorola eventually designed a_ highly
sophisticated eight-bit microprocessor called the
6809 that enhanced the 6800. Unfortunately, by
the time the 6809 hit the market, a rival company
called MOS Technology had come out with a
further 6800 enhancement called the 6502. This is
the most popular of a number of processors
known as the 6500 series. All the members of this
Series use the same instruction set, but differ in
their power and capabilities.
MOS Technology’s 6502 follows a design

philosophy very close in spirit to Motorola’s 6800,
but it is not compatible with the 6800 either in
terms of hardware requirements, or software
compatibility. The Z80, on the other hand,
incorporates the entire instruction set of the 8080,
and can replace it in a computer system, albeit with
some major design surgery.

The 6502 offers an instruction set that any 6800
programmer would feel at home with, advanced
capabilities, and slightly easier interfacing
requirements. But it provides neither software
compatibility, nor the possibility of chip-for-chip

replacement. Given these facts, it is hard to
imagine that the 6502 would enjoy its present
prominent position if it hadn’t been for another
lucky chance: the 6502 was used in the
phenomenally successful Apple computer.
When the Apple appeared, desk-top

microcomputers were dominated by S-100 based
bus designs. These relied on a ‘motherboard’ to
convey power and signals to a separate board for
every function. A minimal S-100 system would
therefore require a power supply, a motherboard,
a CPU board, a memory board, a VDU board,
and probably a printer board and a separate disk
drive board. It is therefore easy to see how
expensive an S-100 system would be compared
with a one-board system such as the Apple.

Relatively cheap though the computer was, the
major breakthrough for Steve Wozniak and his
team at Apple came with a piece of applications
software called VisiCalc. This program proved
very popular with businessmen, who found they
could use it to generate financial predictions more
quickly and easily than with a calculator, pencil
and paper. VisiCalc was so successful that it gained
Apple massive sales for their computer, and this
established the 6502 as one of the leading
microprocessor designs. Commodore also opted
for the 6502 in the PET and its successors.

Yet a further boost came in the UK when Acorn
produced its BBC Micro, also based on this chip.
The BBC had originally specified a Z80, but no
British manufacturer was able to come up with a
suitable design in the time limit set.

While the 6502 chip established its dominance
of eight-bit computer design, 16-bit computers
began to appear on the market. Intel offered the
8088 and the 8086 for these computers, while
Motorola produced the 68000 and Zilog
produced the Z8000. All three 16-bit designs have *
their merits, but none is compatible with their
eight-bit predecessors. Fortunately for Intel,
Digital Research and Microsoft were quick to
come up with operating systems for the 8086/
8088 (CP/M-86 and MS-DOS respectively),
while Zilog and Motorola were badly served by
the software community. IBM’s adoption of the
8088 in its PC computer has also given a further
boost to the Intel chip. ,

The fight for market dominance among 16-bit
chips promises to be a repeat of the eight-bit chip’s —
history. Intel’s 8086 (and the cut-down version,
the 8088) have become standards in the same way
as the Z80 and the 6502. Chief among the reasons
are software support from the MS-DOS and CP/
M-86 operating systems, and their selection in
top-selling micros, notabiy the IBM and the Sirius.
Zilog’s Z8000 chip has only been used in one
general-purpose micro — the Olivetti M20.
Olivetti struggled to provide the machine with
software, finally launching a plug-in card with an
8086 to allow it to run MS-DOS and CP/M-86
software. Since this time, Zilog have set about
designing a new chip, the Z800, which is not only
16-bit, but can run software based on the Z80
processor.

In spite of the recent rapid growth in the 16-bit
field, the majority of computers currently on sale
are based on either the Z80 or the 6502 eight-bit
designs. The 16-bit computers undoubtedly offer
speed and power advantages over their
predecessors, but there’s plenty of life left yet in the
eight-bit machines, in view of the vast amount of
software that has already been developed. —

THE HOME COMPUTER ADVANCED COURSE 163

Chip Count
Sophisticated chips reduce the
number of chips needed on a
circuit board. When Apple
upgraded the Apple Il, the new
lle version had half the number
of major chips

a Te

“HALF MEASURE
Simple integrated circuits replace numerous
transistors in the computer by providing
ready-made logic elements in a convenient

_ package. We now progress from the
transistor circuits that we used to build
AND, OR and NOT gates (see page 144),
and use two integrated circuits to build a

Workshop project are the basis of more complex
digital circuits. One such group of logic gates is
the half adder, which we looked at in the
Computer Science course (see page 33). This
circuit is used to add two single bits. The half
adder uses two inputs, the single bits to be added
and provides two outputs, the sum and a carry bit.
The truth table that represents this is as follows:

The sum output is the sum of the two input bits.
When these two bits are both one, the sum is 10 in
binary. This result cannot be represented with the
single bit output, so the output overflows into the
second bit. This overflow is the carry bit.
A half adder is not very useful in eight-bit

computers: what is really needed is a circuit to
add two eight-bit words together. This circuit can
be constructed from 16 half adders. The first two
bits are added using the first half adder and its
sum bit forms the first bit of the result. Its carry bit
is added to the result of the second sum, and the
carry from that addition to the third, and so on,
thus linking them together. |

Even a simple half adder would require about
10 transistors in the gates we have already
constructed. However, AND, NAND, OR, NOR
and other logic gates are available very cheaply in
groups of four in single integrated circuits. A half
adder can be built more simply from such
integrated circuits.

The logic circuit of the half adder is shown
opposite. This is the simplest form of the circuit. It
uses three kinds of logic gates: OR, AND, and
NOT. As the integrated circuits we will be using
each contain only a single type of gate, this logic
circuit has been simplified to use fewer different
gates. The circuit we will build uses four NAND
gates and a single OR gate. The number of
integrated circuits has been reduced to two. This
circuit is more complicated than the single gate

circuit we built on page 144, so special care.
should be taken to ensure that all the components
are placed in the breadboard correctly.

Once you have built this circuit, you may
consider it to have been a lot of hard work to
achieve very simple results. Although it is much
easier than building the circuit from discrete
ELECTRONIC CIRCUIT

PIN 7, IC1 PIN 14, 1C1

PIN 14, IC2

components such as transistors, it is hard to
conceive of an entire computer built in this way.

In practice, chips are rarely ever used in this
way and only occasionally crop up doing a menial
task in the corner of a circuit board. Larger chips
have more signals going into and out of them so
that the whole chip is a complete device that will,
for instance, add together two four-bit numbers.

The level of complexity grows until particular
chips are capable of performing whole tasks by
themselves.

LIZ DIXON '

164 THE HOME COMPUTER ADVANCED COURSE

Fi ae ..
- 17400N integrated | circuit

432N integrated circuit
| 4HP7 or ert tas. 2
| 1 battery holder —
1 battery clip -
- 1 breadboard (pment 300 c or r similar
uk poe oft wire |

iN

¥

¥

a

Across The Board
Once the electronic circuit is
designed, the next step is the
process of arranging the
components on a breadboard.
You can buy planning pads for
‘this or simply use a
photocopy of an empty board!
Itis best to keep the
breadboard looking as much
like the original circuit as
possible, as the neater the
design, the easier it is to build.
Copy this precisely, as all the
components are in the
correct position

|
eee
ey Res

mma Oe wl)
i” Zemthalbeatass

(Gate Picse= |
| a | | Thin |
ay oa

<i ial lanl msi Dx) X

MECh tt SOOO Ete toto
wh oe Sy 8s NE, RY Ny ME ST,

eaCIninin rin ae “ae Fao Taam
HD, | a | a)

IY
sssie=

, jit) ioe faitaifmit =i lind nt ‘mmm Tey ery ey es ey
Gf eae:

m SE Jol [J popeee oo
ON ee SS ! Halla (a | a (aa

fe Ne ES Ns

mda ce
| Sra ii at mm ae mmc EE EEE aw ee a

D

re Yore 2

Pic Ltheepad | al
=— LiKe

SSSseeorereeen

Faas = . al ~—— ot | (1 ply y. 7

KEVIN JONES

Full Adder
As an exercise, you might like
to try extending your half
adder circuit to a full adder.
This circuit not only adds two
bits together, but also adds a
carry from any previous bit
position. A series of full
adders can add complete
binary words. The simplest
way to create a full adder is to
build two half adders as
shown here. The sum signal
from the first half adder must
replace one of the input
switches on the second half
adder. The carry output from
the first adder must be ORed
with the carry output from the
second adder to produce the
signal for the carry LED

THE HOME COMPUTER ADVANCED COURSE 165

It is possible to solve any logical problem
using combinations of the three basic types
of logic gates (AND, OR and NOT) that we
have met so far in the course. In this
instalment of the Logic course, we
introduce two new gates — NAND and
NOR — which give us alternative ways of
designing circuits.

If we can solve all logic problems using AND, OR
and NOT gates, why do we need to bother
ourselves learning about other types of gates?
The reason is that using these new gates, either in
isolation or with other gates, can reduce the cost
of manufacturing the circuit by simplifying the
wiring required or by producing a more elegant
solution to a problem. All logic problems may be
solved using one of the following techniques:

a) AND, OR and NOT gates together
b) NAND gates only
c) NOR gates only
d) a combination of the above

So let’s look at these two new types of gates. As
with all circuits and circuit elements, the function
of each gate is best described by its truth table.

~ NAND is short for Not AND, and comparing
this truth table with the one for an AND gate (see
page 8) it can be seen that in the output column
all the ones have been exchanged for zeros, and
vice versa.

Similarly, NOR is short for Not OR, and a
comparison of the output columns for this table
and the table for an OR gate (see page 8) again
shows that all the ones and zeros have been
negated. | |

166 THE HOME COMPUTER ADVANCED COURSE

There are no special symbols for NAND and
NOR operations in Boolean algebra but we can —
represent each function using the AND, OR and
NOT symbols that we have already met. A
NAND gate is equivalent to this simple circuit:

and the NOR gate is equivalent to an OR gate
followed by a NOT gate:

USING NAND AND NOR
Just as it is possible to draw AND/OR/NOT
circuits that are equivalent to NAND and NOR,
SO we can represent each of these three basic gates
in terms of a series of NOR gates or a series of
NAND gates.
NOT Gates: Negation can be achieved by
connecting both inputs together, using either a
NOR gate or a NAND gate:

output from an AND gate with inputs A and B is
A.B. However, we can manipulate this expression
into a more useful form:

A.B=A.B (as A=A)

=A+B (de Morgan’s Law)
Thus the circuit can be made by putting NOT(A)
and NOT(B) through a NOR gate:

To create an AND gate using NAND gates is also
possible. The output from a NAND gate is A.B.

et

AND Gates: In terms of Boolean algebra, the ©

a

If this output is negated then we will get: Exclusive OR (XOR) gate (see page 47). The
—— | output from an XOR gate can be defined by the
AB= A.B expression C=A.B.(A + B).

So the circuit will be: Let us take this expression and convert it so
that a circuit for the XOR gate may be
constructed solely from NAND gates. First of all,
let's manipulate the expression so that we obtain
groups of ANDs connected by ORs.

C =AB(A+B) _
OR Gates: Just as chaining two NAND gates = (A.B.A) + (A-B.B) (multiply out brackets)
together is equivalent to an AND gate, so if we —/ABRA\(ADRR sth
chain two NOR gates together we obtain a circuit GRAB) ide i ee)
that is equivalent to an OR gate: When drawing the circuit from a complicated

expression such as the one above, it is best to start
from the output and work backwards to the
inputs. Try following this circuit diagram from
output to input to see how it was constructed.

The required output from an OR gate is A+B.
Using the rules of Boolean algebra, this can be 7 > C={A.B.A).(A.B.B)
manipulated into a NAND form: k

A+B=A+B
=A.B

and consequently the corresponding circuit using NAND gates is: For the NOR form, we must again start with the
original simplified expression for the XOR gate
and manipulate it into groups of ORs connected
by ANDs. This first step can be done by using de
Morgan’s theorem on the left hand part:

C= AB(A+B)
= (A + B).(A + B)

=(A+B)+(A +B)
Converting this expression into a circuit diagram
is again best done by starting at the output and
working backwards.

If we wish to construct a circuit using only NAND
or NOR elements then we may still follow the
simplification methods we have already met, but
first we must manipulate the final Boolean
expression into a form that is suitable. For circuits
incorporating NAND gates, we use the rules of
Boolean algebra to create an expression that
consists of groups of ANDs connected by ORs,
and use de Morgan’s theorem repeatedly until the
expression is completely in NAND form. For
circuits in the NOR form, we employ similar rules
as the example will show. To demonstrate how
these rules are used let’s look aga at the

Answers To Exercise 6 On Page 147 7.) The Boolean expression for Pi is. oe) The circuit is:
) P= ABC+ABC+ABU+ABC

‘Simplification may” be achieved by
- using a —— be 2

9

P=A.B+A.C+B.C c ,

ean ee
LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 167

Flip-Flop
A bistable or flip-flop can store
Or ‘remember’ a single bit.
Combinations of these can be
used for storing whole binary
numbers

BASIC
All home computer owners should be familiar
with this term, and most will know that it
supposedly stands for Beginners All-purpose
Symbolic Instruction Code. Its origins are less well
known. Basic was developed at Dartmouth
College, USA, not as a language for developing
software but for teaching programming.

It was really a derivation from FORTRAN, the
most popular language among scientists,
engineers and academics at the time. Basic cut
down on the complex syntax of FORTRAN (and on
its range of functions). In particular, it replaced the
hard-to-use WRITE and FORMAT statements with
the simple PRINT command.

But the major breakthrough was that BAsIc was -
designed to be interactive: typed in and operated
by someone at a terminal, rather than as a stack of
pre-punched cards. This is why all BAsic lines have
line numbers, so that they can be referred to and
edited. Editing a FORTRAN program had meant
finding and altering the appropriate cards.

BCD
Binary-coded decimal (or BCD) is a method of
storing decimal numbers in binary form (for
example, in RAM or on disk). Most home
computers, however, favour the floating point
format in preference to BCD, because it is more
efficient in terms of memory usage. Using floating
point, a number is converted into one long binary
number and then normalised (the radix point —
see page 148 — is shifted and the number
separated into a mantissa and an exponent). It is
then stored in a pre-determined number of bytes,
which on home computers is commonly five.
With BCD, each digit in the original decimal

number is converted into a four-bit binary number
(half a byte), so the number of bytes occupied will
correspond to half the number of decimal digits.
The computer performs all arithmetic on BCD
numbers in a way that is very similar to the way
that we perform long multiplication or division
(working on each digit of the number separately),
whereas a floating point subroutine would treat
the number as a whole. |

The major advantage of BCD is that it doesn’t
produce the kind of rounding off errors that we
often associate with computers and pocket
calculators. This can be particularly important in
major banking and financial applications.

BENCHMARK
In the early days of microcomputing (when the
PET, Apple II and Tandy TRS-80 were the
predominant machines) a set of benchmarks was
developed to determine the relative speed and
efficiency of the BAsic interpreters. These
consisted of 10 simple routines that tested
different aspects of the Basic (the speed of
execution of loops, floating point arithmetic,
trigonometric functions, etc.). You can still find
the results of these tests printed in magazines that
undertake technical reviews, where they take. the

168 THE HOME COMPUTER ADVANCED COURSE

form: ‘BM1 —- 10.2 seconds, BM2 — 3.87
seconds...’ and so on.
Attempts to introduce a parallel system for

modern business microcomputers have met with
little success. This is largely because the
throughput of a business system is heavily
dependent on the way that the applications
software is written. A microcomputer that can
execute the XYZ accounting package faster than
any other machine may well be the slowest on the
ABC database. The eight-bit Osborne 1, for
example, is not renowned as being a fast machine,
yet it is liked by many journalists because it can
execute the Wordstar word processing program
faster than most of the new 16-bit computers.

BISTABLE
The bistable is one of the simplest of electronic
circuits — you can construct one from just two
transistors and a handful of resistors — yet the
microcomputer owes its very existence to this
invention. As the name suggests, a bistable circuit
is one that has two stable states, usually indicated
by an output line that is ‘high’ (around five volts)
or ‘low’ (zero volts).

The bistable circuit can therefore be thought of
as a single memory bit, capable of storing a ‘1’ ora
‘0’. The first solid-state semiconductor memories
consisted of banks of transistors configured to
form an array of bistables. Static RAM chips,
which are still found in quite a _ few
microcomputers, are nothing more than
miniaturised arrays of bistables. However,
modern designs tend to favour dynamic RAMs,
which store the information in the form of
electrical charges applied to tiny capacitors. As
these charges tend to leak away, they have to be
constantly refreshed by a special electronic circuit
built into the chips. However, dynamic RAMs are
faster, and consume less current, than their
predecessors.

Bistables can still be found in the discrete logic
section of your computer’s printed circuit board.
They are colloquially known as flip-flops, because
of their ability to alternate between two states.
Flip-flops differ in the way that the state is
changed: some have one input line and change
state whenever a pulse is applied. But the most
common form is the J-K flip-flop, which has two
inputs (labelled J and K). Applying a voltage to J
will initiate one state, while a voltage applied to K
will give the other.

_i

LIZ DIXON

a

GRAFPAD/HARDWARE <

SCRIBBLE PAD

The Grafpad is a digitising tablet for
producing detailed designs and drawings on
a home micro. It offers a basic specification
at a price low enough to attract people who
would normally avoid this area because of
the costs involved. There are versions
available for the BBC Micro, Commodore
64 and Sinclair Spectrum. —

Graphics tablets are one of the most versatile and
useful peripherals for micros. They have obvious
uses as drawing and design aids, from freehand art
to electronic circuit design and tracing maps. But
beside straightforward drawing applications, they
provide a useful extra input device. A card overlay
on the graphics tablet can have all of a program’s
features laid out, either in words or pictorially. All
you do is touch the appropriate command with the
stylus (pen), and the software will work out which
option you have selected.

Such systems used to be the preserve of
specialist machines, sold specifically for designers

and engineers. But prices have fallen sufficiently
to let home users try tablets out for themselves.
The Grafpad examined here is one of the leading
low-cost designs, bringing a good specification for
a reasonable price. It’s available in specific
versions for the BBC Micro, Commodore 64 and
Sinclair Spectrum. The version illustrated here is
for the BBC.

There are three elements to the Grafpad: the
pad itself, a linked stylus and the controlling
software. The pad connects to the BBC via the
user port and the stylus plugs in to its side. The
surface of the pad is divided into a ruled grid of 16
by 20 boxes and a command bar (a separate panel
with single letters inscribed on it). The command
bar can be used to control some of the software
without the need to use a keyboard. On top of this
slots a perspex cover to protect the surface of the
pad. It is possible to design your own ‘overlays’
with your own commands and grids drawn on
them.

Inside the pad is a grid of 320 by 256 wires
approximately 1.2mm apart. The stylus nib is a

THE HOME COMPUTER ADVANCED COURSE 169

Graphic ideas
The Grafpad can be used with
its own software to create
designs and drawings, or with
your Own programs as an
input device

tiny switch. When you push the stylus down on the
perspex cover of the pad, a ULA (uncommitted
logic array) chip pulses each of the wires in turn
until it detects the position of the pen by a change
in capacitance. This scanning takes place 2,000
times a second, making locating the stylus a very
fast process. The stylus should be held by the
earthed metal band around its nib to help the
system work reliably.
When the stylus is placed on the pad, the

computer receives the ‘stylus down’ signal and a
report of its co-ordinates on the pad. The exact
effect it creates is determined by the software. A
cross-shaped cursor might appear on the screen in
a corresponding position, or a_ particular
command might be triggered. It’s here that the
Grafpad’s economy begins to show. The stylus can
only be detected on a grid of 320 by 256 positions,
making it difficult to draw very smooth or fine
detail. The pad is also quite small — a sheet of A4-
sized paper is a sensible work area.

The Grafpad has three software packages;
ranging from a simple demonstration routine, viaa
simple drawing program, to a complex CAD

170 THE HOME COMPUTER ADVANCED COURSE

Drawing Area
The top surface is divided into |
20 columns of 16 boxes. The }
pad can detect the pen in any of
320 by 256 positions \

Interface
\ The Grafpad plugs into the BBC’s

1MHz bus expansion socket
(3
\)

Circuitry
When the stylus is placed on the
pad, a ULA scans the rows and
columns, searching for a
capacitance change to
sense its position

Perspex Cover
A perspex sheet protects the top
of the pad. Overlay sheets can
be taped to this

Stylus

Whenever the stylus is placed in
contact with the pad, its position

: is reported to the computer

=A matrix of wires 1.2mm apart is

. Trigger Switch
~* The Grafpad stylus has a tiny trip

+ Switch built into its nib that
‘" triggers off a search for the

: position of the stylus on the pad fh

Command Bar

A special area of the top surface
has a set of letters and numeric

commands that could be used
by particular programs

(computer-aided design) package. The simple
read-the-pad routine can be incorporated in your
Own programs (it’s supplied in machine code anda
BASIC version).

The drawing program is an electronic etch-a-
sketch program comparable to most artist
packages available, even those that don’t use a
pad. It offers all the basic features: lines, boxes,
circles, triangles and ‘freehand’, and will fill an
enclosed area with a particular colour. However, it
lacks more sophisticated facilities, such as being
able to copy and move sections of the drawing.

Designer Software
Grafpad comes with PROG2,
a freehand drawing package
that was used to create these
images. The ability to draw
and fill circles greatly speeds
up the process:

; THE KEY BORRD
SS THE RETURN KEY TO END252,¥=1i96>

Certainly, there is nothing here that a keyboard-
only piece of software couldn’t do although the
Grafpad does allow designs to be traced. The BBC
version will display only four colours at once and
suffers from slow response times.

The CAD program is simply a demonstration
of some of the principles involved. First, you
create a set of characters to be used in the
construction of your designs. For electronics,
these shapes might be components such as
transistors, resistors and so on. You could also
create logic gates, pieces of furniture, or even tile
patterns. Once these are created, you move on to
the actual drawing board where you can freely
repeat and arrange the shapes and join them with
straight lines.

This is very similar to how a real CAD package
works. But the Grafpad software isn’t up to serious
use. Among the facilities you would need are the
ability to label the diagrams, rotate and scale
drawings, magnify a particular portion of the
Screen, position small shapes very accurately and
so on. More flexibility in correcting mistakes is
essential and in general the CAD program misses
the point of using the Grafpad as an input device.
Despite the small command bar on the tablet,
many commands need keyboard input and overall
operation is rather cumbersome.

The Grafpad itself is a versatile peripheral that
offers very good value for money. In terms of area,
resolution and reliability, it is restricted in order to
be economically priced. However, the software
that comes with the system is disappointing and
the unit will appeal most to those who want to
write their own programs. Even so, with suitable
effort, tablets like these will enable people to
explore new possibilities and should prove a
considerable boost for more advanced graphics on
home micros.

THE HOME COMPUTER ADVANCED COURSE 171

Keeping The Shelves Filled
Automated tills can read product
information directly off bar code
labels and record the sales ona
central stock control computer.
Such instant feedback allows big
stores to ensure that the shelves
and warehouses contain the
right products in the right
quantities

The first three articles i in 1 this s series s have
looked at how the cash flow of a small
business can be controlled by the computer.
Now we turn to how the supply and demand
of goods can be efficiently monitored. We
have chosen Dragon Data’s Stock Recording
System and two programs for the Sirius as
examples of stock handling packages. —

Ina perfectly run business, where the owner or
manager knows exactly what customer demand
will be, and what is currently in stock, over- or
understocking would never occur. They are both
the results of poor information. Computerised
stock systems are an excellent way of avoiding
poor information.

To carry out the task of stock control,
- computers have to provide a variety of answers for
management. The business needs to know what
stock it has, how fast (or slowly) particular lines are
moving, when it will need to reorder, as well as the
value of what is currently in stock.

The computerised stock system aims to monitor
stock movements. These movements can be
broken down into the following categories:
outgoing stock that is issued to meet sales orders;
incoming stoek that is bought in from suppliers;
stock allocated to meet orders; and stock on order.

To these four categories has to be added the
ability to make adjustments to stock levels for
goods returned by customers, or for goods sent
back by the business to its suppliers — in other
words, reject goods. Stock-taking also frequently
turns up discrepancies between what is actually on
hand, and what is supposed to be on the shelves.

In addition, the system has to keep track of
stock values. So as well as recording quantities and
monitoring stock movements, the program has to
handle price information.

Stock control systems fall into two rather

172 THE HOME COMPUTER ADVANCED COURSE

TAKING STOCK

different types, depending on whether they are
intended for small businesses in the retailing or
distribution fields, or for manufacturing
companies. In the latter case, the stock system
usually has to take into account the fact that
various components will be drawn from stock
during the manufacturing process and will be
assembled into one manufactured unit. Many
microcomputer-based stock control systems try to
cover the needs of both types of business. In this
article, we will concentrate on the retailing and

. distribution type of business.

COURTESY OF J. SAINSBURY PLC.

Since stock control is bound up with so many
aspects of a business’s activities, it is usual for stock
systems to integrate with a number of other
programs (‘integration’ means that two or more
applications packages will allow values and data to
be passed from one application to another). A
typical, fully integrated system might be linked to
the purchase ledger, the purchase order processing
system, an invoicing module, the sales ledger and
sales order processing.

Integration has a number of advantages. ‘Take a
business, for example, which has a stock control
system integrated with its sales order processing
system. If these two systems are able to
communicate with each other, the stock files can
be automatically updated at the same time as the
sales order is created. Then too, if the sales order
system can look up the stock file for a full narrative
description of a stock item and its selling price as
soon as the stock code is entered, the operator will
have less data to input — and less opportunity for
making erroneous entries.

_ The starting point for any stock control system
is, of course, the stock data file. Every system will
have a way of identifying all stock lines by a unique
code number and by a narrative description. The
code number is used by the program as a filing key.

This can lead to a relatively simple stock system,
or, in the more sophisticated packages, it can be
rather complicated. Dragon Data’s Stock
Recording System, for the Dragon 64 with a
floppy disk drive, provides an example of the
simpler sort of system.

This package allows the user eight
alphanumeric characters for the stock item code,
plus a two-digit product group code. This means
that any stock item can be assigned to one of 50
product groups (the maximum that the system will
cater for). If any stock item is given an item code of
less than eight digits, say 445,’ the system
automatically right-justifies the number. This
means that entering 445 is the same as entering
00445 or 00000445.

The point about justification is important. ACT

—

Pulsar’s Stock Control System, for example, which
runs on larger micros like the IBM PC and the
Sirius, offers users the choice between a right- and
a left-justified coding system. The resulting stock
coding systems are totally different and
incompatible.

The product code can be up to 16 alphanumeric
characters long. The right-justified system is a
numerically ordered system of codes. The left-
justified system is designed for users who have
rather more complex coding systems, involving
alphanumerics — say, PX445/44. It allows codes of
different lengths for different products and is
useful for systems where the user wants to use the
product code to identify some feature of the stock
line, such as pattern, size or colour.

Omicron’s Powerstock package, which runs on
the Sirius, is a more expensive system designed for
users with more complex requirements. This has
an even more complex coding system, and is

401423

56312¢

634189

Manchester Graphic Center D

ramancwace Mfanchester Graphic Center

3722

defined in terms of stock groups. A stock group
can be any set of stock records that are related by
common processing or reporting requirements.
What makes it different from Pulsar’s left-justified
coding system is that each stock group is processed
separately and different processing rules can be
assigned to each group. Remember that whatever
the code number assigned to a product line in
Pulsar, all code numbers are processed identically.

The coding structure of stock control systems,
therefore, has to be flexible enough to allow users
to identify and subdivide their stock lines. The
simpler systems running on the cheaper home
computers tend to offer less flexibility because of
the constraints, once again, on memory and
storage. The Dragon Data system, for example, is
designed to handle a maximum of 350 stock items.
Omicron’s Powerstock system is open-ended —
the maximum number of items depends on the
user’s computer angen.

(MONDAY’S INVENTORY

401423

563120

634189

@1 TAKINGS
1

16 GOODS FOR as
17

37 PROFESSION. FEES
258.8

36 FIXED ASSETS

58 CREDIT CARDS SUS
SL)

59 CURRENT BANK A/C

68 CASH AC
635.68

73 ¥YAT ACC

634189 Crave

Stock Control
Integrated sales and stock
control systems in high turnover
businesses can benefit greatly
from an automated point-of-sale
system to keep the inventory and
accounting files up to date.
Sales data can be written ona
marker such as a Kimball tag or
a bar code attached to the
product. The markers are read
by an optical reader attached to
the cash till. This may be a
microcomputer itself, or it may
pass the data to a computer for
processing

Stock Purchase Report -Tuesday 5 June 1984

Product Supplier Quantity

Required

481423 Natty Threads Ltd ise

at Emptor Inc se -

TONY DUNCAN-SMITH — LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 173 |

—

DEGREES -
OF PRECISION
In this second instalment of a series on
mathematics and BASIC programming, we
continue our look at trigonometrical
functions (begun on page 154). Here we
look at how the sine and cosine functions
can be used in BASIC programs, and also
provide ways of testing these two functions
to check for any possible sources of error.

Because BASIC is provided with both COS and SIN
functions, calculating the position of a point on a
line after rotating it through a certain number of
degrees should be an easy task. The COS of 8 will
give the position on the x-axis (the x co-ordinate)

_ and the SIN of @ will give the position on the y-axis
(the y co-ordinate). However, when using these
two functions, it is important to remember that
most versions of BAsIC work in radians and not
degrees. Another thing that should be checked is
that the values returned for 8 may not be reliable
as 8 approaches 0 or 1. The first thing we will do is
deal with the vital difference between degrees and
radians.

If a portion of a circle (called an arc) is drawn so
that its length is exactly equal to the radius of the
circle, the angle at the centre is defined as one
radian (see the illustration). If the radius of the
circle is one unit, this portion of the circumference
will also have a length of one unit. The formula
for finding the circumference of a circle is 27tr, so
there must be 27 radians in one complete
revolution. One complete revolution — the turn
needed to make a full circle — expressed in a more
familiar notation is 360 degrees. Therefore, 360°
is equal to 27 radians. This gives us an easy way of
relating degrees to radians:

360° = 27 radians
180 = 1 radians
a ="/, radians

"/180 = ().0174 radians

A BASIC program that needed to find the cosine of
an angle measured in degrees would first have to
convert the angle measure from degrees into
radians, and then use the COS function. Try this:

10 INPUT “INPUT ANGLE IN DEGREES’;A
20 LET B# =A * 0.0174
30 LET C# = COS(B#)
40 PRINT “THE COSINE OF ”;A;“ DEGREES IS ”;C#
90 END

The hash symbols indicate that the variables in the
program are double precision (which we'll look at
later in this article). A simple modification of this
program using the sine function, will input all

174 THE HOME COMPUTER ADVANCED COURSE

values of 8 from 0° to 360° and produce the sine
of these values as a table. If these values are
plotted against the y-axis of a graph (where the x-
axis represents values of 8 in radians), the sine
wave graph familiar to hi-fi buffs and electrical
engineers will result (see the diagram on page
155). This familiar curve is nothing more than the
plot of positions of the intersection of the
hypotenuse with the unit circle on the y-axis for all
angles of rotation. In other words, it is an
alternative way of describing a_ circle
mathematically.
A few versions of Basic allow the SIN and COS

functions to work on either degrees or radians by
using a ‘software switch’, but most do not. If you
prefer to work in degrees all the time, it is possible
to define a ‘user defined function’ to make the
conversions for you. Here is one possibility:

10 REM A USER DEFINED FUNCTION FOR WORKING
IN DEGREES

20 DEF FNDSIN (D#) = SIN(D #*0.017453293)
30 INPUT “INPUT ANGLE IN DEGREES’;D#
40 PRINT “THE SINE OF #”;D#,“ DEGREES IS";

FNDSIN(D#)
90 END

Line 20 defines a function called DSIN (standing
for “degrees/sine’) that uses as its only parameter
the double precision variable D#. The right hand
half of the definition simply shows how the value
to be returned by the function (the sine of an
angle in degrees) is to be derived. To call a user

_ defined function, you simply use the name of the
function (with the value to be operated on in
parenthesis) as usual. Note, however, that the line
containing the definition must be executed before
any calls to the function can be made.

One of the problems of using the sine function
in BASIC is that not all Basics handle it correctly as
the value of 8 approaches 0. It should be obvious
that, as 9 approaches zero, the value of SIN 6 will
also approach zero, since SIN @ is zero when @ is
zero. In other words, as the angle gets nearer and
nearer to zero, so the arc on the circumference
that defines 8 comes closer and closer to zero, and
the point at which the hypotenuse intersects the
circle gets closer and closer to 0 on the y-axis.
Unfortunately, the precision of BAsIc is limited. In
other words, BAsic can only handle very large
values up to a certain value and very small values
down to a certain value. If @ is very small (say
1.0E-36, i.e. 1 X 10 to the power of minus 36),
then BASIC may not be able to cope and will simply
return a value of 0 for the sine of such numbers.
Before using the sine function, try testing your
BASIC using the following small program:

\

Sine Underflow Or Roundoff Errors
1 REMTEST FOR SIN FUNCTION ROUNDOFF OR UNDERFLOW ERRORS
10 LET X = 10/6
2) RINT “I TERATION"," VAL OF X"," VAL OF ‘SIN(x)"
30 FOR I = 1 TO 40
40 LET X = X / 10
50 PRINT 1,X,SIN(X)

you need to work with very large or very small
numbers you may need to write special arithmetic
routines to overcome these limitations.

Smali Numbers In BASIC
1 REM TESTS HANDLING OF SMALL NUMBERS IN BASIC So Nee y
10 LET X# =.00003333333333% 70 END 20 PRINT "ITERATION"," DBL PREC"," "," SNGL PREC”

ITERATION VAL OF X VAL OF SIN(X) ib cok - 1 To 40
0166667 0166659 60 LET Xi _ xe 1.66667E-03 1.66667E-03 70 PRINT 1.X#.X1
1.66667E-04 1.66667E-04 SO NEXT I
1.66667E-05 1.66667E-05 90 END
1.66667E-06 1.66667E-06 .

1.66667E-07 1.66667E-07 ITERATION DBL PREC SNGL PREC i. oF 1 .000003333333333 33330586. F ee eee 2 .0000003333333333 3. 533508-07 1. 66667E-11 1 66667E-11 3 3.333333333D-08 3.33333E-08 1. 66667F-12 1. 66667R-12 4 3.333333333D-09 3.33333E-09
1 .66667E-13 1 .66667F-13 5 B39 3 5033 35 b 210 3, 33333810 1.66667E-14 1. 66667E_14 6 9, 3333353533D-11 3 353335813 1.66667F-15 1.66667F-15 7 3. 333333333D-12 3.33333E-12 hy 1. 66667E-16 1.66667F-16 8 3, 333333333D-13 3. 33333E-13) 1.66667F-17 1.66667E-17 9 BL SS 5553 9530-14 3. 333338-14 1.66667E-18 1. 66667F-18 10 3, 333533333D-15 3.33333E-15
1 .66667E-19 1 .66667E-19 1] 3. 335333333D-16 3.33333E-16 1. 66667E-20 1. 66667F-20 12 2.35553 55 530 17 3. 33333R-17 1 666c7e i 1. 66667F-21 LA. 3,35 553533350- 18 3.33333E-18 1. 66667E-22 1. 66667E_22 14 3. 333333333D-19 3.33333E-19
1 .66667F-23 1 .66667F-23 1s 3. 3333333330-20 3.33333E-20 1. 66667E_-24 1. 66667E-24 16 3.333333333D—-21 3.33333E-21 1. 66667E-25 1 .66667E-25 17 3. 333333333D-22 3.33333E-22 1. 66667F 26 1. 66667E-26 18 3.333333333D-—23 3.33333E-23 1 66667E_27 |. 66667E_27 19 3. 333333333)-24 3.33333E-24 1 66667E_28 1. 66667E-28 20 3.333333333D-25 3.33333E-25 1. 66667E_-29 1. 66667E-29 Zt 3. 333333333D-26 3.33333E-26 1. 66667E 30 1 .66667E-30 22 3, 333333333)-2/7 3.333338-27 1. 66667E_31 1. 66667F-31 23 3333333333)-28 3.33333E-28 1.66667E-32 1. 66667F-32 24 3.333333333D-29 3.33333E-29
1. 66667E-33 1. 66667E-33 25 323333333533). 30 3.33333E-30 1. 66667E-34 1. 66667F-34 26 3.333333333D-31 3.33333E-31
1 .66667F-35 1. 66667E-35 27 3, 3533553320 32 3.33333E-32 1. 66667F-36 1 .66667E-36 28 3.333333333D-33 3.33333E-33 1. 66667E-37 1. 66667E_37 29 3.3333338333)-34 3.33333E-34 1. 66667E-38 1. 66667E-38 30 3. 333333333)-35 3.333338-35 0 : 0 : 31 3, 333333333D-36 3.33333E-36
0 0 32 B23 5333353330- 37 333355837

as 3, 333333333D-38 3.33334E-38 , : ; ; : 34 0 0 0 | A run of this program using Microsoft’s MBASIC is 35 0 0 0 : : : 36 0 0 0 | given. This particular Basic interpreter handles the / 6 0 0
. 9

0 SIN of small numbers quite well and doesn’t cause 5 ; 0
trouble until the value of 0 is less than 1.0E-38 (a |_42 : : : ' e e

| decimal point followed by 37 zeros). _
| The program given depends on an adequate

: :) : ° REM TESTS HANDLING OF LARGE NUMBERS IN BASIC dynamic range in sasic’s handling of floating LET X# = 3.3333333333333344
: = : : PRINT "ITERATION',"™ DBL PREC’, " SNGL Pree” | point arithmetical operations. It is well to pee : '

| remember that before you can use any a
mathematical operation in BAsic with confidence, ci |

e ? eee you need to be aware of the range of numbers it NEXT
can handle accurately.

. ITERATION DBI, PREC : SNGL PREC Remember that a variable name alone, such as a oe
: : ; 1O7 2 333. 3333333333334 333.333 X or TREND will automatically be single precision : ae a

| (i.e. capable of storing no more than seven digits). 4 es ere ce . . é 2 Bi : Alternatively, variables can be specified as, or 6 9933935 331333334 .33333E+06 . ste ‘ 7 93333333 .33333334 ~33333E+07 changed to single precision by appendin an 8 953539595 3375334 .33333E+08 ‘ - 3333333335 333334 33333E+09
bs =

e
. i+ exclamation mark, as in X! or TREND!. Double 33333333333,33334 133333E4+10 ee : ; aes i S333 553555353954 -33333E+11 precision variables (which can store 17 digits) are A a

1 1 1 1 1 S323 5 555533355 34 - 333338413 at y aes nee cage as In X# or 1 Se A353 55 553359383. 4 333338414 arl can ay 333333 3333333334 -33333E+15 ; nteger v: ables (Ww c store only «333333333333334D+16 ~33333E+16 whole numbers) are specified in many versions of
BASIC by appending a per cent sign, as in X% or
TREND%.
We end this article with a short program that

lets you test how many digits can be stored in a
variable in your version of Basic, together with a
print-out of the program when run using
Microsoft Basic. There are two versions, one for
testing small numbers and one for large ones. The
print- out for small numbers shows that as the
numbers become very small (less that 3.3 X 1OE-
38) BAsIC rounds the numbers off to zero. For
large numbers (greater than 3.3 x 10537) an
overflow occurs and the results are unreliable. If _

$222533335333334D417
- 333333333333334D4+18
- 333333333333334D4+19 ©
- 333333333333334D+20
«259333333 333393340+21
2935553555 353540472
7 5535335355393 340423
SO Rue es Cp es
- 333333333333334D+25
- 333333333333334D+26
+ 333333333333334D+27
3353333333333 340428
-333333333333334D4+29
» 2333555333335 340450
»$333333333333350431
7 3333333333333350+32
- 333333333333334D+33
+ 333333333333335D+34
+ 333333333333335D+35
- 333333333333335D+36
- 333333333333335D+37
-701411834604693D+38
-701411834604693D+38
-701411834604693D+38

2 33358+17
, 3393338418
~33333E419
S35 338220
339538 s21
~333338+22
~33333E+23
.33333E+24
~ 233338495
~J93S3Es26
.33333E+27
.33333E+28
-33333E+29
-33333E+30
33333843)
3393338232
- 333338433
.33333E+34
Pee as
333338436
~33333E337
. 701418438
-70141E+38
.70141E+38

Woo ee OO 00 ~1 OS

hoohS hh

CON ee

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
]
1
] FH WWOBDWWWWWWWWWWWWwWwWwwww

THE HOME COMPUTER ADVANCED COURSE 175

STARTING FLAG
Having already used the add instruction in
previous instalments of the course, we now
begin to examine its implications in terms
of methods of arithmetic, and the system
architecture needed to support them. Here,
we look more closely at the processor
Status register and its part in addition — in
particular the role of the carry flag.

The add instruction in both Z80 and 6502
Assembly language is ADC — meaning ‘Add With
Carry’ — a mnemonic of great importance for
Assembly language programming. The concept
of a ‘carry’ bit is of particular significance. Let’s
consider the addition of two hex numbers in the
accumulator:

A7 = 10100111
#:GE = + 00111110

ES - 11100101
Since the accumulator is an eight-bit register,
both the numbers to be added and the sum itself
must be in the range S00 to SFF (as they are here)
or else they will not fit into the accumulator. Does
this mean, therefore, that we are restricted to
additions in which the sum is less than $100?
Consider another addition in the accumulator,
one which violates this restriction:

FF 11111111
. EF + 11111111

1FE 111111110

This shows the addition of the largest possible
single-byte numbers, and seems to be an illegal
addition. It requires a nine-bit accumulator. The
solution to this dilemma is suggested in the
statement of the problem — we need only an
extra bit on the accumulator to contain the largest
number that can be generated by the addition of
single-byte numbers. That extra bit is required
only in the sum, not in the addition operands, and
it is required only when there is a ‘carry’ from the
most significant bit of the accumulator.

PROCESSOR STATUS REGISTER
The extra bit is therefore known as the carry bit,
and it is located in the eight-bit register associated
with the accumulator known as the processor
status register (PSR). This important register is
connected to the accumulator and the ALU in
such a way that individual bits of the PSR are set
or cleared following any accumulator operation,
depending on the results of that operation. The

176 THE HOME COMPUTER ADVANCED COURSE

contents of the process status register can be
regarded as a simple number, but it is usually
more informative to treat it as an eight-elemént
array of binary flags, whose individual states
show the particular effects of the last operation (a
flag is any variable whose value indicates the state
or truth-value of some condition, rather than
being an absolute value. A flag variable usually
has only two states or conditions: up or down, on
or off, 0 or 1).
When any operation is performed on the

accumulator that causes a carry out of the eighth
bit, then the carry flag of the PSR will be set
automatically to 1; an operation that does not
cause a carry will reset (set to 0) the carry flag.
This applies only to those operations that might
legitimately cause a carry. Some operations, such
as loading to or storing from the accumulator, do
not affect the carry flag. Whenever we investigate
a new Assembly language instruction in the
course from now on, we shall want to know which
of the PSR (or flag register) bits it affects.
Naturally, we shall need to know more about the
other PSR flags, but let’s finish our discussion of
the carry flag first.

In general, when adding two single-byte
numbers we won’t know in advance what they
will be, so we have to be prepared for the sum of
such an addition to exceed SFF; usually this will
mean reserving two bytes of RAM to hold the
result of an addition. Consider, again, the
previous addition examples:

Hex Cary Binary
Numbers Flag Num

A7 = 10100111
+ 3E = + 00111110

OOE5 = 0 7 4 1100101

No
FF = 11111111

+ FF = + 49111111

O1FE = 1M. 7111111110
Carty

The result of the addition is represented in both
examples as a two-byte number. In the first case,
the carry flag is reset to 0 because there is no carry
out from the eighth bit of the sum (the two-byte
result is SOOES, of which the hi-byte is $00). In
the second case, however, there is a carry out
from the eighth bit, so the carry flag is set, and the
hi-byte of the result is $01.

To be sure of getting the correct result of an
addition, therefore, we must store the
accumulator contents in the lo-byte of the two-

byte location, then store the carry flag as the hi-
byte of that location. There is no single
instruction for storing the carry flag, but the ADC
op-code was formulated with precisely this
operation in mind: ADC actually means ‘add the
instruction operand to the current contents of the
carry flag, then add that result to the contents of
the accumulator’. Addition is thus a two-stage
process, in the first of which the current state of
the carry flag is used, while in the second stage the
state of the carry flag is updated.

This means, then, that before beginning an
addition, we must consider the current state of
the carry flag, since it will be added into the
addition sum proper: hence the two unexplained
instructions in previous instalments, CLC and AND
A. The former, a 6502 instruction, means ‘clear
the carry flag’, and does exactly that. The Z80

_ version, AND A, means ‘logically AND the
accumulator with itself’. While not designed
Solely to reset the carry flag it does have that
effect and doesn’t affect anything else, so is often
used as a Z80 equivalent of the 6502’s CLC.

Having cleared the carry flag before starting an
addition, therefore, we must store its contents
afterwards. This is achieved by adding the
immediate value S00 to the hi-byte of the result.
This won’t affect the byte if the carry flag is clear,
but will add 1 to it if the carry flag is set.

All of what we have said in this instalment
leads to the first method for single-byte
arithmetic:
1) Clear the carry flag
2) Load the accumulator with one number
3) Add in the second number
4) Store the contents of the accumulator in the lo-

byte of a two-byte location
5) Load the accumulator with the contents of the

hi-byte
6) Add in the immediate value $00
7) Store the contents of the accumulator in the hi-

byte |

When this procedure is turned into Assembly
language we get:

the carry, sign and zero flags. We have seen that

Remember that the values given for LOBYTE,
HIBYTE and ORG are for example only — you must
choose values appropriate to the machine that
you use. Notice that the first two instructions of
the program load $00 into HIBYTE, so that it’s not
corrupted by random data. We don’t have to
clear LOBYTE in the same way because its starting
contents are overwritten with the lo-byte of the
result.

It is worth remarking again about the
differences of approach between Z80 and 6502
Assembly language as seen in the example.
The 6502 code reads quite simply once you’re
used to it — the mnemonics themselves and the
use of ‘#’ to signal immediate data make the
meaning of each instruction clear. The Z80
version is less straightforward because the LD
mnemonic is used for all data transfers whether
into or out of the accumulator. Also, there is no
‘# symbol to signal immediate data, only the
absence of brackets around the operand indicate
this. Thus LD A,BYTE1 means ‘load the
accumulator with the immediate data BYTE1’;
Whereas LD A,(HIBYTE) means ‘load the
accumulator from the address HIBYTE’. In the full
Assembly language listing there is no ambiguity
in the meaning of such instructions, since the hex
value of the op-code uniquely identifies the
instruction. This may seem to beg the question,
however — the op-code may be unique, but if
there is a choice of unique op-codes, how does
the assembler (or the person doing the assembly)
choose between them? The answer lies in the
Addressing Mode, which will be the topic of the
next instalment.

Finally, we should take note that the processor
status register contains other flags as well as the
carry flag, which we’ll examine briefly now, and
return to in detail later in the course:

Z80 PSR: $. Zz H PV N C

BitNumber |

MSB

6502 PSR:

For our present purposes the important flags are

after an addition the carry flag holds the value of
the carry out of the eighth bit of the accumulator.
The sign flag is always a copy of the eighth bit (bit
7) of the accumulator, and the zero flag is set to 1
if the accumulator contents are zero, and reset to
0 if the contents are non-zero. |

|

WZ mn ETN

THE HOME COMPUTER ADVANCED COURSE 177

178 THE HOME COMPUTER ADVANCED COURSE

—

| Data Base Op-code in hex. X=SET/RESET

?=UNDEFINED
Number of bytes ina

Mnemonic followed by its complete instruction

eaning including the op-code). Processor: Z80 or 650

There are often several ways
_ of using the same mnemonic:
we tabulate them individually.

A fully assembled example of
_ this op-code in use.

Lp) — LOAD THE ACCUMULATOR

: From memory —AD) (3% es)

The contents of the memory
ocation whose address follows | Example:
the op-code are loaded into the LOCATION |.MACHINECODE © ASSEMBLY LANGUAGE
accumulator. © 6FOO AD O07 B3 LDA §$B307

EFFECT ON PS BEFO

How the various bits of the
processor status register are
affected by execution of this Data
op-code. |_ Memory

The PSR showing the affected
bits. Data flow indicator. The state of the PSR and the

accumulator before and after

The flags of the PSR Address of any byte of RAM | —&XeCution of the sample
(processor status register) in affected by the example. instruction.
their abbreviated form.

Where the example Location addresses of the
instruction resides, according bytes of the machine code
to the assembler. instruction.

A fuller explanation of the op-
code and its effects.

6502
LOCATION © MACHINECODE © ASSEMBLY LANGUAGE
A000 AQ 3F LDA. #S3F

BEFORE AFTER

LD A - LOAD THE ACCUMULATOR —
immediate. —AQ (2 bytes) _

_ The contents of the byte
following the op-code are
loaded into the accumlator.

EFFECT ON PSR
SV BOl zc

MSB IX! | } | | |X] | LSB

— LOAD THE ACCUMULATOR

a DA From memory —AD (3 bytes)
The contents of the memory
location whose address follows
the op-code are loaded into the

6502
LOCATION MACHINE CODE — ASSEMBLY LANGUAGE

accumulator. 6FOO AD O07 B3 LDA §$B307

EFFECT ON PSR BEFORE ‘AFTER

SY BOIZ7C = ## =| ~~ PSR 1272222271 «11277777

S6FO0
S6FO
S6F02

\ Program |
Memory

Al ??, | MSB |X} | | | | [X{ | LSB
, Pi |

: $B307

Memory

— STORE THE ACCUMULATOR
STA To memory —8L (3 bytes)

The contents of the accumulator

are loaded into the memory Example:

location whose address follows LOCATION MACHINECODE = ASSEMBLY LANGUAGE
theop-code. E532 8D A2 65 STA $65A2
EFFECT ON PSR BEFORE AFTER

SV BO0IZE 22222277| [22279279

msBL[T [1] [[Jtse
NO EFFECT

— ADD WITH CARRY
ADC Immediate —-69 (2 bytes)

The carry, flag plus the contents
of the byte following the op-

code are added to the contents
of the accumulator.

EFFECT ON PSR
SV BDIZzC

MSB [X]X] | | | [X/X| LSB

Example:

LOCATION MACHINECODE = ASSEMBLY LANGUAGE

840B 69 A2 ADC #SA2

_ BEFORE AFTER

00777701] 111222200

— LOAD THE ACCUMULATOR

Immediate —3E (2 bytes) LD A,
The contents of the byte
following the op-code are
loaded into the accumulator.

EFFECT ON PSR ~
SZ H VAC

msB[{TT T[[T]ts8
NO EFFECT

LOCATION © MACHINECODE = ASSEMBLY LANGUAGE
A000 3E 9B LD A,S9B

BEFORE = AFTER

LOCATION MACHINE CODE § ASSEMBLY LANGUAGE

— LOAD THE ACCUMULATOR
LD A, From memory —3A (3 bytes)

The contents of the memory
location whose address follows
the op-code are loaded into the

accumulator. 6F00 3A £9 F4 LD A,(SF4E9)

EFFECT ON PSR BEFORE AFTER

5924 7 VNC | PSR 172722797) [27779997

msB[| J] | JT [| tse
NO EFFECT ne Ma

S6FO0
| £9 | S6F01

S6F02
__™ Program

Memory

LOCATION MACHINE CODE § ASSEMBLY LANGUAGE

— LOAD THE ACCUMULATOR
LD()A To memory —32 (3 bytes)

The contents of the accumulator

are loaded into the memory
location whose address foilows

the op-code. E532 32 £9 F4 LD (SF4E9),A
EFFECT ON PSR BEFORE AFTER

| S82 H Vc PSR [22222222

msBCT [TT TT Tits} A eT ae
NO EFFECT

SE532
SE533
SE534
Program

Memory

— ADD WITH CARRY

Immediate —69 (2 bytes) AUC A,

Ce Mn TD oe
SF4E9 | 4B me ee

“st eee
as

Dtal sy YP?

To the contents of the

Memory

accumulator are added the carry | Example:
flag plus the contents of the LOCATION MACHINECODE = ASSEMBLY LANGUAGE
byte following the op-code. 840B CE B9 ADC A,SB9

EFFECT ON PSR BEFORE AFTER
eZ H VAG

MSB{X]X! IX] |X] |X} LSB

THE HOME COMPUTER ADVANCED COURSE 179

WL tu [Ty AN

180 THE HOME COMPUTER ADVANCED COURSE

IT TAPED
Virgin Games is a subsidiary of the highly
successful independent record company,
Virgin Records. The connections between
promoting popular music and computer
programs are significant: software ‘pop
charts’ are becoming as important as the
Top Forty.

When the market for home computer software
was an unknown quantity, back in the early.
1970s, .it afforded many opportunities for
youthful entrepreneurs to cash in on the demand

' for cassette software. Anyone who could write
amusing games programs in BAsiIc could get hold
of a high-speed cassette-to-cassette audio
dubbing machine and sell mail-order through the
small ads. |

Today, things are not so simple. No matter how
good a programmer you are, you must possess
originality and creativity in order to make the
grade. Different software houses originate their
product in different ways. Imagine Software for
instance, (see page 79) has many in-house-
programmers coding their bosses’ creative ideas.

Nick Alexander, the 28-year-old managing
director of Virgin Games, says: ‘Often the better

. the programmer, the fewer the ideas they have. ‘To
be a good programmer you need to be very
logical, very methodical, very diligent, and those
tend not to be the qualities of the creative
individual’. For this reason, he has chosen to
restrict Virgin’s in-house programmers to a

minimum. The plan is to provide a technical and
creative service to correct the deficiencies in the
many programs that they receive every week from
young hopefuls. Capable programmers are
helped in developing ideas; and the creative
people get help with coding.
The rewards of being published by Virgin may

appear less than those from other companies. A
game that Virgin publishes earns an advance of
between £1,000 and £3,000 for the author against —
7.5 per cent royalties on the net price. Contrast
this with the 25 per cent royalties that many other
software publishers claim to offer. But Alexander
argues that because nearly a quarter of the net
revenue of any game is ploughed back into
promoting it, sales (and the author’s eventual
reward) are subsequently much greater.

Promoting products is, of course, an activity
that Virgin knows a lot about. Virgin’s name was
established through its successful ventures in the
music business and the techniques that 31-year-
old Virgin boss Richard Branson learned in that
field have been applied to its software offshoot.
Games writers are promoted as stars in their own
right — cassette inlays not only credit the author
by name, but also feature a picture and thumbnail
biography. Virgin Games, which started in
February 1983 by advertising for games in the
home computer magazines, received 500 initial
submissions. Now it has 46 titles for eight home
computers on its list. Its best sales are for the
Spectrum, with the BBC Micro in second place
and the Commodore 64 not far behind.

Virgin’s hottest new writer is Martin Wheeler,
who is 15 and has just written two new games for
the Spectrum, ‘Dr Franky and the Monsters’ and
‘Sorcerers’. Wheeler has assembled the programs
in machine code, and developed some impressive
graphics for them. Alexander sees a similarity
between the home computing scene of today and
the music business of a decade ago and believes
that computing is on the way to displacing music
as the favoured leisure activity of the young.

wick Alexander

Z omprehensive aid t A ae
j : : : é i z : z ; : : fi

—~

i ‘i

p Hay om e a Ac 4 ra
= ii |

BO =

Sably de} ve
ng

" ==
nt 1e

: .
bs % ad e of

4 ogre a ning e e ta] sid A

As be >

~~

icky, leebrche ted i = a -

_The Mo ‘itor, di _— sins 4
wi v0 hex an Med vac rai

7 _

ce See onipererene eat 2

j > b i
j

i fi Y 2 ‘ ; , . : ‘ : g j
: i 3 x rt i 2 i ‘a’

: - . —
i ; ~ -———

| :

nN ew ae 3 3 : 3 ee

|

: dows Ss ee ee ond rrewe acceconrneteionns
. z FH ii 4 j iy : ,

$ i : 4 - - H j s i 1 so fjonee cer snensneneees ° { ‘ a; i i q
q i]

: 3 $ z f i i p H " H q q : 4 i ; am t 3 i i ;
, ,

' 7p: ri tbe ‘ A 7 i " di 4 f ° — oe

;

é

eM ee se

H 3 : i ;

s 3

i i i : i i
H : H Ei z :

CES

Sp
pa

ia
ta

nc
ee

ae
s

cornerageuceningctearengpenacimr@imennins

sreentansen.icehirnrssorrekipsorbiesunsreloairpsirtenehtoestneiesttipucipsietcnsinemetensintanssetessinhirsiessonsiasttsteasiteetieiteeeINetesara beasts
MabhetetAcrpstesteAt HAAN M

S
N
A

oe

ees

RE
PE
L

P
R
E
E
C
E

FE
S
T
R
E
E
T

T
S

TE
BE

TN

O
r
e

r
e

HP

S
R
R

=
,

.
I
O

Y
)

S
e
h
n
e
r
t

O
T
e
,

A
e

RH
C

OW

RI
,

%

eS

P
A

Monotenctaumennni

ERE

